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ABSTRACT

While most of the current research focus is rightfully put on
finding and mitigating vulnerabilities in industrial control
systems (ICS), the opposite angle, namely researching oper-
ational weaknesses or unintelligent decisions of ICS malware
that make them susceptible to detection, defensive entrap-
ment, and forensics at large, is lesser explored. In this pa-
per we perform a quantitative evaluation of the ability of
Havex ICS malware plugin to correctly discover and query
its target industrial control systems. We discuss the reverse
engineering and analysis of various blocks of machine code
of the Havex ICS malware plugin that pertain to its target
selection process. We then quantify mathematically several
performance measures of its target selection process. We
find that despite its notoriety in the media as a nation state
sponsored attack code, the Havex ICS malware plugin uses
a plain and unsophisticated target selection process. That
weakness in the malware opens the way to targeted defen-
sive mechanisms to accurately neutralize the Havex malware
and alike.
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The Havex malware gained notoriety in the press after
the discovery that it targets industrial control systems (ICS)
over the network. FireEye, F-Secure, and Microsoft identify
the Havex malware as Backdoor:W32/Havex.A. The Havex
malware uses conventional ways to infect its targets, namely
direct exploitation of network services and fishing e-mails or
malicious links to exploit web browsers. A third way, per-
haps not so much explored by other malware, consists in
the execution of trojanized installers. The attackers behind
the Havex malware exploited vulnerabilities in the web sites
of ICS software providers, and thus replaced legitimate ICS
software packages with trojanized versions. When pulling
software updates from those compromised web sites, vari-
ous ICS operators received the trojan code, which they ran
on their machines under the assumption that the needed
software updates were being installed [4, 3].

The trojan code drops and executes a dynamic-link li-
brary (DLL) called mbcheck.dll. That DLL connects to
command and control servers over the network, awaiting
instructions. Those command and control servers can re-
quest mbcheck.dll to download and run malware plugins on
the compromised machine. One of the Havex malware plu-
gins targets industrial control systems. More specifically,
it searches for Object Linking and Embedding (OLE) for
Process Control (OPC) servers [5, 6], also referred to as
Open Platform Communications (OPC) servers, that are
reachable by an infected machine. The reverse engineering
work discussed in [4, 3] led to the discovery of a number of
command and control servers in Internet, which have been
observed to communicate with Havex ICS malware plugins
running on compromised machines.

In this paper we look at the Havex ICS malware plu-
gin from a different perspective. While typically it is the
Havex ICS malware plugin to target machines in the elec-
trical power grid, in this work we analyze the Havex ICS
malware plugin for operational weaknesses or unintelligent
decisions that could help the defender detect and disable
the attack. We focus our work on the efficacy of the tar-
get selection process of the Havex ICS malware plugin. The
contribution of this paper consists of a quantitative evalua-
tion of the performance of that process in empirical terms.
We draw on mathematical techniques of detection theory,
and also discuss the inner workings of the target selection



process of the Havex ICS malware plugin in support of the
quantitative evaluation.

The remaining of this paper is structured as follows. In
Section 2 we discuss some of the related work. The tar-
get selection process of the Havex ICS malware plugin is
described in Section 3. The empirical mathematical analy-
sis of the performance of the target selection process of the
Havex ICS malware plugin is done in Section 4. In Section 5
we summarize this work, and conclude the paper.

2. RELATED WORK

Several aspects of the Havex malware and its ICS plugin
have been reverse engineered and analyzed by malware re-
searchers with FireEye and F-Secure [4, 3]. Here we focus
on its target selection. Malware is known to perform tar-
get selection based on various forms of validations. One of
those validations pertains to verifying that a compromised
machine is not a trap aiming at aiding a forensics analyst to
uncover the operations of the malware [12]. Most dynamic
code analysis projects are implemented through the use of
a debugger tool, and often on a virtual machine. Malware
codes actively use anti-debug mechanisms to detect the pres-
ence of a debugger in a running system. Once a debugger is
detected, the malware takes action to hinder code analysis.
Some of those actions aim at creating frustration for the an-
alyst and/or introducing a considerable time delay into the
overall code analysis process.

Other more deceptive actions include skipping execution
of blocks of code that are otherwise critical to understanding
what the malware does, executing those blocks of code with
data that conceal the actual behavior of the malware, or ex-
ecuting dummy blocks of code that are there only to perform
dummy computations that appear as if the malware is doing
something useful. All those actions can deceive the analyst.
Similarly, malware can utilize a variety of techniques to dis-
cover whether or not the machine it is running on is virtual
rather than physical [12]. Other validations that are typi-
cally performed by malware pertain to detection of central
processing unit (CPU) emulators [13]. The target selection
process of the malware is directly affected by those findings.
If the malware discovers that its execution environment is a
decoy, it does not proceed with pursuing its targets.

Stuxnet is known to perform some validation when search-
ing for its WinCC targets. The attack code actively searches
for Step 7 project files, but excludes those found under paths
that match *\Step7\Examples\*. The latter are example
project files, and typically serve as a model for developers to
follow. Example project files are unlikely to be used in pro-
duction, and thus are not viable targets for infection. The
attack code also searches for .mcp files, which trigger Step 7
project infection and WinCC database infection. The attack
code also monitors the PLC blocks that are being written to
or read from a PLC so that to infect specific types of Simatic
programmable logic controllers [14].

To the best of our knowledge, this paper is the first to
quantitatively evaluate the performance of the target selec-
tion process of ICS malware, although our defensive decep-
tion interventions are different than those mentioned earlier
in this section. While methods from detection theory are
applied to psychology and medical sciences, in this work we
find a correct application of those methods to malware per-
formance evaluations.

3. TARGET SELECTION IN HAVEX

We reverse engineered with IDA Pro [2] the machine code
of the main Havex malware DLL and its ICS malware plu-
gin to see for ourselves the inner workings of how that mal-
ware discovers and selects OPC servers to spy upon. The
Havex ICS malware plugin relies on Windows networking
(WNet) [1] to discover all the servers, including OPC servers,
that are reachable by the compromised machine over the
network. The network search for servers is indiscriminate
rather than specific. The Havex ICS malware plugin imports
MPR.dll, i.e., the multiple provider router (MPR) DLL, so
that its Wnet calls are forwarded to provider DLLs. A net-
work provider DLL is responsible for handling network con-
nections and data transfers between the machine as a client
and remote servers. Communications with OPC servers are
conducted by a provider DLL, which provides a set of func-
tions to the MPR DLL to invoke.

The OPC servers are discovered if the MPR DLL has al-
ready loaded a registered network provider DLL for OPC at
the moment the Havex ICS malware plugin issues the WNet
calls. The Havex ICS malware plugin starts an enumeration
of the network resources on the compromised machine. The
Havex ICS malware plugin exhibits general interest in all
network resources, given that the scope of the enumeration
is RESOURCE_GLOBALNET. Furthermore, the interest in
all network resources is indicated by the resource types and
usage in the Wnet call that starts the enumeration. The NE-
TRESOURCE structure in the Wnet call in question, which
indicates the container to enumerate, references the root of
the tree of network resources on the compromised machine.
In other words, the Havex ICS malware plugin starts with
the topmost container in the tree of network resources, and
then explores the paths down to the leaves.

The enumeration of the tree of network resources on the
compromised machine yields a list of all servers that are ac-
cessible over the network by the compromised machine. At
this point, the Havex ICS malware plugin checks each one
of those servers over the network for Microsoft Component
Object Model (COM) interfaces [7]. More specifically, the
Havex ICS malware plugin attempts to create over the net-
work an instance of the OPC Server Browser class on each
of the servers in question.

Upon creating each OPC Server Browser object with class
identifier CLSID_OPCServerList, the Havex ICS malware
plugin receives an array of MULTI_QI structures. One of
those structures includes a pointer to the interface identifier
IID_TIOPCServerList or IID_IOPCServerList2, along with a
pointer that can be used to invoke functions on the OPC
Server Browser object through that interface. Issuing a call
through the interface with identifier IID_IOPCServerList or
IID_TIOPCServerList2 on the OPC Server Browser object of
each remote machine (referred to as server previously) that
supports COM, returns a list of OPC servers, namely the
class identifiers of OPC server objects on the remote ma-
chine. Knowledge of the class identifier of an OPC server
object enables the Havex ICS malware plugin to issue calls
through its standard interfaces.

An example is the IID_IOPCBrowse interface of an OPC
server object, which allows for reading the attributes associ-
ated with an ITEMID of interest. The Havex ICS malware
plugin also reads the data tags of each OPC server. A tag is
a string that references a memory location in an industrial
controller, and typically stores a physical parameter related



to the physical process monitored and/or controlled by the
industrial controller.

The access to OPC tags over the network may be lever-
aged to identify the physical process behind the industrial
controllers on the field. The OPC tag names are often cho-
sen under the same principles as variables in a computer
program, so that they are self-explanatory and representa-
tive of the physical parameters that they are mapped to in
the memory of an industrial controller. In those cases, iden-
tifying the physical process becomes straightforward. The
identification of the physical process is a required milestone
that an attacker would have to attain for being able to pro-
gram the malware to damage that physical process. The
Havex ICS malware plugin does not take the step of initi-
ating physical damage, as pointed out in [3, 4]. Instead, it
limits itself to encrypting all those data, and sending the ci-
phertext to a command and control server over the network.

With these findings at hand, in this paper we focus our
forensics analysis on the first three of the following com-
ponents of the target selection process of the Havex ICS
malware plugin:

e Ability to discover true servers over the network from
the compromised machine, and ignore or discard nonex-
istent or absent servers on the network.

e Ability to determine whether or not a network server
hosts COM objects and interfaces.

e Ability to find true OPC server objects on a remote
machine, and dismiss COM objects that are not OPC.

e Ability to differentiate between real and hence valid
OPC tags and honeytoken OPC tags or OPC tags that
are no longer mapped to a location in the memory of
an industrial controller.

Analyzing the last component in the above list requires
deploying and configuring an industrial controller to mon-
itor and control a real physical process, such as the pas-
sage of electrical energy from one circuit to another circuit
through a power transformer. As the sensors provide mea-
surements to an industrial controller such as an intelligent
electronic device (IED) that is attached to the power trans-
former, the corresponding data tags in an OPC server are
updated. Those tags then would represent true targets for
malware such as the Havex ICS malware plugin to validate.
This is something that we did not implement in this specific
work, mainly due to safety reasons and lack of a physical
lab space that was suitable to contain possible disruptions
caused by the interaction of the malware with the power
transformer.

Otherwise, the generation of invalid OPC tags that are to
be targeted and possibly validated by the Havex ICS mal-
ware plugin is straightforward. Possible alternatives include
randomly generated values, or values correlated according
to known formulas under ideal conditions. Not only does
the level of accuracy (or inaccuracy) of the target selection
process in a piece of malware, such as the Havex ICS mal-
ware plugin, determine the magnitude of the true spread of
the malware in the electrical power grid, but it also affects
directly the amount of misinformation that can be injected
into the attacking side. In the case of the Havex ICS mal-
ware plugin, for example, the malware’s inability to identify
true target industrial control systems enables the defender to

provide large amounts of honeytokens, i.e., fake data, which
the malware would encrypt and send to the attacker.

Those honeytokens could refer to large industrial hon-
eynets operated by the defender. If at a later time the at-
tacker decided to instruct the command and control servers
to upload plugins into the Havex malware so that to ini-
tiate physical damage, the extended attack would drain in
the industrial honeynets rather than disrupt true electric
power equipment. We now quantify the performance of the
target selection process of the Havex ICS malware plugin,
and show that it is quite naive and hence vulnerable to the
aforementioned cyber operation.

4. QUANTITATIVE ANALYSIS

Our quantitative analysis of the target selection process of
the Havex ICS malware plugin involves the so-called signal
trials and noise trials, as per detection theory [8]. The signal
trials consist of true targets, which we expose to the Havex
ICS malware plugin and then empirically observe whether
or not the malware recognizes those targets as such. The
noise trials consist of fake or nonexistent targets. As in the
case of signal trials, we empirically observe whether or not
the Havex ICS malware plugin pursues them. Thus, in both
signal trials and noise trials the tasks are binary, namely the
Havex ICS malware plugin implicitly takes a decision yes to
pursue the target, and no to ignore it and take no further
action on it. We are interested in measuring two factors
as in traditional detection theory, namely response bias and
sensitivity of the Havex ICS malware plugin.

The response bias of the Havex ICS malware plugin is
a general tendency that it may have to deem a target as
valid or invalid, i.e., signal or noise in detection theory ter-
minology. The sensitivity of the Havex ICS malware plugin
is the degree of overlap between its valid-target probability
distribution and invalid-target probability distribution. For
each value of the quantification of the internal factors that
cause the Havex ICS malware plugin to pursue a target, the
valid-target probability distribution shows the probability
that the target is valid, while the invalid-target probability
distribution shows the probability that the target is invalid.
Both the response bias and sensitivity levels are affected by
the hit rates and false-alarm rates that empirically charac-
terize the target selection process of the Havex ICS malware
plugin.

We conducted a large amount of signal trials, where a
Windows machine was infected by Havex in a physically
isolated network and thus had access to real servers on that
network. In the majority of these signal trials, the Havex
ICS malware plugin discovered the servers on the network
correctly. Those few signal trials in which the Havex ICS
malware plugin failed to discover the servers over the net-
work involved reasons like the MPR, DLL not finding a net-
work provider DLL, or various forms of WNet errors, which
interfered with the network server discovery. We also con-
ducted a large amount of noise trials, where the Windows
machine infected by Havex had no access at all to any servers
over the networks. Instead, the Windows machine in ques-
tion was running deceptive network drivers that emulated
the operation of network interface cards on that machine.
Those deceptive network drivers were paired with real net-
work provider DLLs.

The setting was functionally similar to the testing envi-
ronment discussed in [4], in which the authors utilized an
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Figure 1: The valid-target probability distribution
and invalid-target probability distribution as per-
taining to the ability of the Havex ICS malware plu-
gin to discover true servers over the network from
the compromised machine.

Arduino Uno to run an OPC server not connected to any
industrial controllers, and thus with no real OPC tags. The
deceptive network drivers in conjunction with WNet caused
the appearance of servers that were in fact nonexistent. In
the majority of those noise trials, the Havex ICS malware
plugin pursued the phantom servers as valid targets. The
two probability distributions are depicted in Figure 1.

To quantify the sensitivity of the Havex ICS malware plu-
gin, we calculate the d’ measure, which measures the dis-
tance between the mean values in those probability distri-
butions in standard deviation units. The two probability
distributions in question are approximately normal distri-
butions, and have standard deviations that are close to each
other. We calculate the d” measure according to the formula
given in [9], namely:

d =2 "(H) -2 '(F) (1)

® is a function that converts z scores into probabilities.
Intuitively, the function ®~! converts probabilities into z
scores. H is the hit rate measured empirically, while F' is
the false alarm rate, which is also measured empirically. The
value of the d’ measure that we obtain in the case of the
Havex ICS malware plugin is d’ = 0.179. The two curves
are almost identical. A value of d’ so close to zero indicates
that the Havex ICS malware plugin is unable to distinguish
over the network the real servers from nonexistent servers.

We also calculate A’ as a nonparametric measure of the
sensitivity of the Havex ICS malware plugin, using the for-
mula given in [10], which is:

2
0.5 - E=PEE, i H < F @

A {0.5+“’;§;(<11+§)—F>, if H>F
Recall from [10] that the values of the A’ measure range
from 0.5, which indicates that valid targets cannot be dis-
tinguished from invalid targets, to 1.0, which indicates full
ability to distinguish valid targets from invalid targets. The
value of the A" measure that we obtained empirically in the
case of the Havex ICS malware plugin is A’ = 0.576.
We quantified the response bias of the Havex ICS malware
plugin by empirically calculating the $ measure according to
the formula from [11]:

Figure 2: The two probability distributions in rela-
tion to the ability of the Havex ICS malware plugin
to discover servers that host COM objects and in-
terfaces.
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Recall that when 8 = 1, there is no bias. When 8 < 1,
there is a bias towards accepting the target as being valid.
When 8 > 1, there is a bias towards discarding the target
as invalid. In the case of the Havex ICS malware plugin, we
obtained a value of 8 equal to 8 = 0.791, which indicates
that the Havex ICS malware plugin has the tendency to
recognize as a valid server any software component that can
respond to network queries.

We conducted a large amount of other signal trials in
which existent servers hosted true COM objects and inter-
faces. Those servers accepted to create true COM objects
based on the class identifier that the Havex ICS malware
plugin passed them. The Havex ICS malware plugin was
allowed to create over the network an instance of the OPC
Server Browser class on each of those servers. Thus, those
were all valid targets for the Havex ICS malware plugin. In
the vast majority of these signal trials, the Havex ICS mal-
ware plugin pursued those servers as valid targets. It missed
a few of them due to classes not registered in the registra-
tion database, or various errors with retrieving interfaces. A
large amount of noise trials followed. This time, none of the
servers hosted COM objects and interfaces. However, each
of those servers generated a fake response when queried for
COM objects and interfaces, acting like a honeypot.

The Havex ICS malware plugin accepted most of those
servers as valid targets, and thus continued with the search
for OPC server objects. Clearly all those searches failed
since there weren’t any OPC server objects on the machines
in question. To quantify the findings, the two probability
distributions are depicted in Figure 2.

We calculate a value of the d’ measure equal to d’ = 0.196.
As it can be seen from Figure 2, the probability curves over-
lap to a large degree. The Havex ICS malware plugin is again
unable to distinguish over the network the servers that host
COM objects and interfaces from those that don’t. The
value of the A’ measure that we obtained is A" = 0.589,
which is very close to the floor value 0.5. We obtained a
value of B equal to 8 = 0.723, which indicates that the
Havex ICS malware plugin is biased towards accepting as a
valid target any server that claims to host COM objects and

e




i’ =1.36370418333
4%

s

2y

1y

Figure 3: The two probability distributions in rela-
tion to the ability of the Havex ICS malware plugin
to discover real OPC server objects.

interfaces. The final tests involved a large amount of other
signal trials in which existent servers that support COM for
real hosted OPC server objects. The Havex ICS malware
plugin recognized all those servers as valid targets, and thus
began retrieving attributes from the OPC server objects.

The final tests also involved a large amount of noise tri-
als, in which existent servers that support COM did not
host any OPC server objects. Those servers, however, acted
like honeypots by returning lists of OPC server objects that
did not exist. The Havex ICS malware plugin then followed
up with attempting to read attributes from those nonexis-
tent OPC server objects. The Havex ICS malware plugin
accepted as valid targets several of those nonexistent OPC
server objects. Others were not pursued due to difficulties
with delivering a thorough OPC interaction with the Havex
ICS malware plugin. To quantify these other findings, the
two corresponding probability distributions are depicted in
Figure 3. The value of the d’ measure that we calculated
is equal to d = 1.864. Despite being higher than in the
previous trials, the d’ measure is still very low and hence
an indicator that Havex ICS malware plugin in general is
unable to differentiate real OPC server objects from nonex-
istent ones.

We calculate a value of the A’ measure equal to A’ =
0.775, which indicates a slightly above average success with
causing the Havex ICS malware plugin to fail in the correct
identification of real OPC server objects. The value of 5 that
we obtained is equal to 8 = 0.018, which again indicates that
the Havex ICS malware plugin is biased towards accepting
any claim of OPC server object as valid.

5. CONCLUSIONS

Havex managed to spy on a large number of OPC servers
not because it is a piece of intelligent malware, but sim-
ply because the defenses of its target machines, especially
defensive deception mechanisms, may have been weak or
entirely absent. After all, Havex was run as trusted code
on the compromised machines. The various mathematical
measures that we computed in this work show that the per-
formance of the target selection process of the Havex ICS
malware plugin is poor and hence unsupported by any vali-
dation. That leaves the Havex ICS malware plugin vulnera-
ble to detection, forensics, and cyber operations based on de-
fensive deception, which is positive from a security perspec-

tive. The findings of this work also bring a new perspective
to securing industrial control systems, in that finding and
leveraging weaknesses in ICS malware such as Havex helps
create customized mechanisms for detection and disabling
of the attack.
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